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Abstract-The previously undetermined constant A is evaluated unambiguously and a general 
method of performing such evaluations is given. The atomic radii of the alkali metals in the solid 
state are calculated from the compressibility parameters of the metals through an evaluation of the 
excluded volume, beth, E. The values obtained are in excellent agreement with both the Slater and 
Bragg values. It is shown that on compression, the volume decrease is due to the disappearance of the 
defect volume and the internal volume in the aggregates and that up to about 100,000 kg/cm2 for 
lithium, sodium, potassium and rubidium and to about 23,000 kg/cm2 for cesium the radii of the 
alkali metals probably do not decrease. 

INTRODUCTION 

IN A previous publication(l) (herein called I) it has 
been shown that the alkali metals obey Tait's law 
quite exactly and that from the Tait coefficients, 
J and L, the volume at constant temperature can be 
determined precisely from the pressure, in the 
whole range investigated, that is, up to 100,000 
kg/cm2• While this information is important, the 
utility of the determination of the Tait coeffi­
cients can be extended much further to give us a 
deeper insight into the nature of the solid state. 
This information is the outcome of the fact that 
the Tait equation, which was first proposed as an 
empirical law(2) has been theoretically derived (3,4) 
from the general association equation of state(5) 

Pv 

RT I-(D/v) 
(1) 

In the Association theory (see Ref. 7) solids are 
considered to consist of an agglomerate of small 
aggregates of atoms (mosaic crystal). Each of these 
aggregates has perfect order and consists of a 
number of unimers (atoms here). The aggregates 
are of different sizes and are connected by defect 
spaces. The number of unimers in a given weight 
is the stoichiometric number of formula moles 
called here formoles. The number of aggregates or 
particles or j-mers is a significant quantity called 
the avmolity (Avogadro moles) in the theory. 

This paper is devoted to an exposition of such 
insights and to computations derived from them. 

EQUATIONS AND COMPUTATIONS 
From the derivation of Tait's Law the following 

relationships emerge(4) 

J = (v-D)/4> 2: x6:r;N:r; (2) 
:r; 

where N:r; is the number of particles in moles of and 
size x per gram and L = (RTw)/MO L x6:r;N:r; (3) 

:r; "£.N:r; is the total number of particles per 
gram 

E = sum of the excluded volume per gram 
= "£.6:r;N:r; 

where J and L are the Tait's coefficients 

v = specific volume 
P,R, T have their usual meaning 

* Present address: St. Francis College, Brooklyn, N.Y. 
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w = weight of the sample = I g here 
MO = Molecular weight of the I-mer, here 

the at. wt. 
cp = Av(L/J)ev/J where A is an un­

determined integration constant. 
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These equations and the general equation of 
state enable us to derive equations for some of the 
internal variables(4) of solids: namely 

wRTJ¢> 
(v-E) = -L-M-O-

ARTwvev/J 

MO 
(4) 

: wJP¢> AwPvev/J 

~Nx =- MOL = MO (5) 

'i:.xNx w/Mo 
Zn=---=--

'i:.Nx 'i:.Nx 

L e-v/J 

=--=--
JP¢> APv 

(6) 

where (v-E) is the defect volume and Zn is the 
number average degree of association. 

Since as originally derived A is an undetermined 
integration constant, the first computations were 
of the values of (v-E)jA, (ZnA) and ¢>jA as a 
function of pressure. The calculations were carried 
out on an IBM 1620 computor and the input 
consisted of J,L,R,T,w,MO,H and the pressure 
range. H is the integration constant in the in­
tegrated form of Tait's equation as evaluated in I. 
Table 1 summarizes the values of the input 
variables. Except in the case of potassium where 
the Br II values (see I) were used, the combined 
Br II and Br III values for J and L as derived 
from Bridgman's data were chosen. The data from 

the two sets were combined in the following man­
ner. For each set separately (Br II and Br III) a 
set of equally spaced values of P vs. dPjdv was 
calculated from the experimental data over the 
range covered. These calculated values from the 
separate sets were then combined to find the best 
values of J and L for the combined set. The raw 
data could not be combined since they covered 
different ranges and were given at different inter­
vals. In this way all the data were used and the best 
values derived therefrom. 

In calculating the values of J and L we noted 
Bridgman's assertion that these were room tem­
perature values. However he does not identify this 
temperature further. In I, since the temperature 
does not appear explicitly, this posed no problem, 
although minor variations in the room tem­
perature in Bridgman'S work would have the 
effect of introducing small irregularities into the 
curves. Perhaps some of the apparently systematic 
variations in some of the curves in I, notably in 
the case of potassium, can be traced to systematic 
variation of this sort during the various experi­
mental runs. In the calculations in this paper we 
must use the temperature explicitly and have 
chosen room temperature as 300oK. This choice is 
undoubtedly wrong but a reasonable choice must 
be made. 

In this paper we will confine ourselves to a con­
sideration of pressure effects at constant tem­
perature and an examination of the Bridgman data 
previously analyzed in I. The interesting results of 

Table 1. Values t of the input parameters for the determination of (v-E)/A, ZnA, and ¢>/A. 
Pressure range 0-100,000 kgjcm2 (except' as noted). Temperature 3000 K (room temperature). 

R (gas constant) = 84·783 (kg/cm2)cm3 moleoC 

HxlO-6 

Metal MO (at. wt.) J(cm3) L(kg/cm2) (kg/cm2) Sourcet 

Lithium 6·939 0'372105* 24211·7* 3'62242* Br II-Br III 
Sodium 22·9898 0·185566 14416·8 3·25935 Br II-Br III 
Potassium 39·102 0·184129 3453·65 2·12937 Br II 
Rubidium 85·47 0·104465 3660·75 1·97998 Br II-Br III 
Cesium low 

pressure 0-23,000 132·91 0·112291 545H5 0·58229 

* The numbers in these columns are truncated. Computations were made using a minimum of 8 digits. 
In certain cases 15 or 20 digits were used. ( 

t The determination of these values is described in Ref. 1. The weight of all sample w- was taken as 1 g 
so that the volumes calculated were the specific volumes. 
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FIG. 1. Pressure vs. number-average degree of associa­
ciation, Zn, times A for lithium, sodium, rubidium and 

potassium. 

BEECROFT and SWENSON(6) on sodium at a variety 
of temperatures and pressures will be analyzed in 
a subsequent publication. 

Evaluation of A 
The first calculations were of (v-E)/A and 

ZnA as given by equations (4) and (6). The 
results of these calculations are shown on Figs. 
1,2 and 3. As can be seen the curve of ZnA shows 
a minimum. This implies that on the application 

of pressure the degree of association of the solid 
first decreases to a minimum and then increases. 
At first glance this appears impossible but careful 
examination shows that it is logical. One must ask 
first what is meant by the degree of association of a 
solid. From the discussion in I, one sees that 
essentially the structure of a liquid and a solid are 
alike: both consist of small particles separated by 
defect space. The essential difference is that the 
liquid particles exhibit approximate 5-symmetry 
while the solid particles have 3, 4 or 6 symmetry. 
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From the fact that particles with approximate5-sym­
metry cannot totally fill space but form a more or 
less irregular body with many internal voids, arise 
the special properties of liquids, while the fact that 
particles with a regular 3, 4 or 6 symmetry can fill 
space and occupy fixed positions give rise to the 
properties of solids. Solids (with certain exceptions) 
generally consist of a mosaic of crystallites. As 
pressure is applied, these crystallites are distorted, 
that is they lose symmetry. The loss in symmetry is 
not micro-uniform throughout all the mass of the 
solid but micro-heterogeneous. In essence what we 
are saying is that the average size of these particles, 
each of perfect symmetry, is broken down to 
smaller particles also each of perfect symmetry. 
This entails a decrease in the average degree of 
association. Another way of looking at this process 
is from energy considerations. An increase in 
pressure results in an increase in potential energy 
in the solid. This energy is stored as broken bonds. 
If bonds break this entails a breakup of the crystal­
lite particles. 

Understanding now what is happening under 
the application of pressure, the question is, what is 
the meaning of the minimum? To answer this 
question we proceed as follows: at the minimum 
the value of (8Zn/8P)T is zero; hence taking the 
derivative of equation (6) we have 

(
OZnA) 0 
-- = -[I/Pv exp(vfJ)] = 0 

oP T 8P 
(7) 

carrying out the operation and simplifying we have 

~ = (: +;) ;; 
Inserting Tait's equation 

-(:;) T = -L-~-P 
and simplifying we have as conditions at the mini­
mum that 

vmln J 

Pmin L 

Let us now proceed further. 
It has been shown (7) that 

1 
Zw=­

vc/> 

(8) 

(9) 

where Zw is the weight average degree of associa­
tion. From equation (6) 

L 
Zn=--

JPc/> 

when Zw = Zn then 

v J 

P L 
(10) 

From the identity of equation (10) with equation (8) 
we see that at the minimum in the Zn curve, 
Zn = Zw, i.e. the weight-average degree of 
association is equal to the number-average degree 
of association. The question then is under what 
condition are the weight and number averages 
equal? It is well known that this occurs only when 
the substance under investigation is homogeneous 
in molecular weight. Considering the fact that the 
solid under pressure is decreasing in molecular 
weight, the simplest and most logical assumption 
to make is that at the minimum 

Zn = Zw = 1 (11) 

If this is the case then the integration constant 
A can be evaluated. ZnA is known and hence 

(ZnA)min = A (12) 

This gives us an unambiguous general method 
of deriving the value of A. 

Computation of A 
There are several methods of varying precision 

of evaluating A from the experimental data. 
(1) One can use equation (8) together with the 

integrated Tait equation 

(P+L) exp(v/J) = H 

to get 

P = L log H-L log(P+L) 

or v = JIog H-JIog[(Lv/J)+L] 

(13) 

(14) 

(15) 

These equations can be solved for P or v by 
iteration. 

(2) Graphically one can plot P/v vs. P and deter­
mine the value of 

P L 

v J 
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Table 2. Evaluation of A and the parameters at the minimum in the Zn curve 

Pmln t!m1Ji 

Metal (kg/cm2) (emS) Ax106 "'min ZWmln 

exact to 10 digits 
Lithium 84,819·8* 1·303580* 0·272219* 0·767118* 1 
Sodium 55,284·8 0·711600 0·549218 1·405284 1 
Potassium 16,239·1 0·865777 0·645614 1·155032 1 
Rubidium 16,807·0 0·479612 1·258094 2·085020 1 
Cesium low pressure 17,608·1 0·362564 6·203762 2·758131 1 

* These values are truncated values from the computation in which 20 digits were used. 

(3) One can interpolate in a table of P/v vs. P 
the value of L/J using Lagrangian interpolation. 

of the unit cell. Hence in tenus of the radius, r, of 
the atom the length, I, of the unit cell is 

(4r)2 = 3/2 

4 
l=-r 

-yl3 

All these computational methods have been 
tried. The test of the precision of the answer is to 
calculate Zw which should be equal to 1. The or 
methods in 1 are computationally difficult since 
obtaining the logarithm to a sufficient number of 
digits is difficult. Method 2 is inherently im­
precise, although by this method very good 
preliminary results were obtained, the calculation 

since four atomic radii lie along the unit cell dia­
gonal. The volume of the unit cell is then 

of Zw showed that they were imprecise. We used 
method 3 which is very precise. The results are 
reported in Table 2. 

ATOMIC RADII 
Since we now know beth, b, for the alkali 

metals many other quantities become accessible to 
calculation. One of these is the atomic radius. Beth 
is the excluded volume of the metal, i.e. it is the 
volume of the associated particles in the metal. 
These particles may be considered to be composed 
of spherical atoms packed in a particular array. In 
the alkali metals this array is b.c.c. This configura­
tion in addition to the atoms also has internal free 
space; we will call this space the internal volume of 
the particles. We now differentiate between the 
total volume, v; the defect volume, (v-Ii), which 
is the volume between particles, the excluded 
volume, Ii; and finally the internal volume which 
is the space in Ii not occupied by the spherical 
atoms. To obtain the atomic radii we must first 
evaluate how much of the excluded volume is the 
internal volume. 

In a body-centered array, the atoms conceived 
as spherical balls are touching along the diagonal 

Since for body-centered packing each unit cell has 
two atoms the volume per atom is 

32 
volume per atom = --r3 

3-y13 

The volume per Avogadro number of atoms (for­
mole) is 

32 
vol/formole = --r3No 

3-y13 

Also since Ii is the excluded volume per gram, 
IiMo is the excluded volume per formole where 
MO is the molecular weight (here at. wt.). Hence 

32 
IiMo= -r3No 

3-y13 

solving for r we have for a b.c.c. array 

( 
3-y13 )1/3 

r = --IiMO 
32No 

(16) 

, 
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FIG. 4. Pressure vs. excluded volume, Ii, for the alkali 
metals. See text for discussion of potassium curve. 

The corresponding formula for a f.c.c. configura­
tion is 

( 
EMO )113 

r = 4y'(2No) 

while for a simple cubic:array it is 

r = (EMO)1 /3 
SNo 

(17) 

(IS) 

We now assume that the associated particles in 
the solid are large enough so that the end effects 
are negligible. Using our value of A calculated at 
the minimum point, we calculate E at 1 atm. using 
equation (4). Thus we arrive at the values given in 

Table 3. As can readily be seen these values are 
as good as the SLATER(8) or the BRAGG(9) values 
which are derived from X-ray measurements. 

In Fig. 4 is shown a graph of the excluded 
volume, E, as a function of the pressure. Whether 
the maximum in the potassium curve is real, is 
questionable. However we have already discussed 
the fact that the potassium values are not good. The 
excluded volume decreases because as the particles 
decrease in size the internal volume is released and 
becomes part of the defect volume. As the pressure 
increases the defect volume also decreases. This 
means that the decrease in volume with increase 
in pressure is generally due to a squeezing out of 
defect volume. In Table 4 it can be seen that the 
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excluded volume approaches the total volume in 
magnitude as the pressure is increased. However 
the question still remaining is: are the atoms 
compressed as the pressure is increased to 100,000 
kg/cm2? If the atomic radius could be un­
biguously calculated at the various pressures an 
answer might be forthcoming to the question. 
However the problem is; what is the arrangement_ 
of the atoms at increasing pressure? We have seen 
that we could assume that at one kg/cm2, the atoms 
are arranged in a body-centered lattice and we 
could get very good values for the atomic radii 

compared to the X-ray values. We know some­
thing about the atoms at one other point. Here the 
crystal-array symmetry has been disrupted and the 
atoms exist as I-mers. We have calculated the 
atomic radius at this point under several assump­
tions: first, we have assumed that their volume is 
4/3rrr3. This is undoubtedly wrong because 
spherical atoms cannot be packed in a volume with 
no free space so that this value should be too high. 
Secondly, we have calculated the radius as if body­
centered symmetry still existed. This also is wrong 
because we know that this symmetry does not 

Metal 

Lithium 

Sodium 

Table 3. Excluded volume, B and atomic radii of the alkali metals. 
Pressure = 1 kg/cm2, temperature = 300oK, No = 6·02283 X 102s 

r (A) 
Metal B (eroS) (this paper) 

Lithium 1-585320* 1-43675* 
Sodium 0-867506 1·75192 
Potassium 0-876645 2 ·09854 
Rubidium 0·524303 2·29461 
Cesium low 

pressure form 0·457988 2-54125 

* Truncated from 20 digits used in calculation. 

r (A) 
(Slater) 

1·45 
1·80 
2·20 
2·35 

2-60 

r (A) 
(Bragg) 

1-50 
1·77 
2-07 
2·25 

2·37 

Table 4. Total, excluded and defect volumes at 1 and 100,000 kg/cm2• 

Calculated densities at 1 kg/cm2 

Density 
Excluded calculated Density rubber 

Pressure Total volume volume Defect volume = Ilv at handbook* 
(kg/cm2 ) (vlg) (B/gro) (v-B/g) 1 kg/cm2 

1 1·86351 t 1·58532t 0·27819t 0-S37t 0·534 (20°C) 
100,000 1·25508 1·21855 0·03652 

1 1·00401 0·86751 0-13650 0·996 0·971 (20°C) 
100,000 0·61963 0·60901 0·01062 

Potassium 1 1'18282 0·87664 0·30617 0-845 0·862 (20°C) 
100,000 0·S5689 0·55208 0·00481 

Rubidium 1 0·65739 0·52430 0·13308 1-521 1·532 (20°C) 
100,000 0·30814 0·30594 0·00220 

Cesium 1 0·52446 0·45800 0·06647 1·907 1·8785 (15°C) 
23,000 0 ·33897 0·33074 0·00824 1 ·873 (20°C) 

* Handbook of Chemistry and Physics, 45th ed. (196~5). The Chemical Rubber Co., Cleveland, Ohio. 
t Rounded off from 20 digits. 

, 
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Table 5. Approximate values of radii at the minimum point 

Radius in A Radius in A 
Pressure at calculated calculated as Average Radius in A 
minimum from if in radius at this paper at vIE 
(kg/cm2) (4/3)11r3 b.c.c. symmetry minimum 1 kg/cm2 at minimum 

Lithium 84,819 '81 1-513 1·331 1 '422 1·437 1 '0343 
Sodium 55,284 '75 1'847 1 '624 1·786 1'752 1·0289 
Potassium 16,239'13 2·339 2 ·057 2-198 2·099 1·0485 
Rubidium 16,807'03 2·501 2·200 2·351 2·295 1·0383 
Cesium 17,608 '07 2'646 2'327 2'487 2'541 1·0309 

exist. Thirdly, we have taken an average of these 
two results. This is also wrong since averaging 
cannot remove the errors. Nonetheless the values 
(Table 5) obtained are comparable with those in 
Table 3 and show that the atoms are not likely to 
be squeezed at these pressures. At high pressures 
they undoubtedly are, however, squeezed since 
the ratio of the total volume to the excluded 
volume is approaching 1. It is noteworthy that at the 
minimum point the ratio viE is approximately 
constant. 

In Table 4 is also shown a calculation of the 
density compared to the published values. The 
densities are calculated from the volumes computed 
by Tait's Law. The comparison is good considering 
that they are based on the whole compressibility 
curve. 

Further work is in progress. 
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